If it's not what You are looking for type in the equation solver your own equation and let us solve it.
32x^2-64x+32=0
a = 32; b = -64; c = +32;
Δ = b2-4ac
Δ = -642-4·32·32
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$x=\frac{-b}{2a}=\frac{64}{64}=1$
| 6t^2+7t+2=0 | | -13(-3+n)=286 | | 9q^2+6q+7=0 | | 32x^2-64x+32=1 | | 5t^2+4t+4=0 | | 7x+6=4x+1 | | 3x+2=(2x+13)3 | | 6d-11/2d=2d-13/2 | | Ix/3=12 | | x-6=3x-20 | | 5x+23=7x+9 | | 25+25=x-83 | | 19x=351 | | (8x+28)+(11x-19)=360 | | 0=16t^2+590t | | (4x-6)=18 | | 0=16t^2+590 | | 23=m+5 | | 3x-5(x-2)=-6=2x-12 | | 9^(x+3)=27 | | 0=-16t^2+610t | | (4x+10)^((1)/(4))-(7x+9)^((1)/(4))=0 | | 3^2m-1=20 | | 7x-5÷4=56 | | 2=x-19.5/4.5 | | 25*x^2+6025*x-500=0 | | (x)=x(x^2+3600) | | (7+x)2=14x | | 2x(2)+10=60 | | 0.3(p-4/3)=5-0.6p | | (x)=x(2x+3600) | | -3/8p=6 |